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We discuss a method of calculating the flux of particles and the distribution of den- 
sity, velocity, and temperature of a gas in the presence of evaporation from the in- 
ner surface of an axisymmetric hole. 

When materials are subjected to highly concentrated energy fluxes, apertures (holes) can 
be formed because of melting and evaporation of the material. When the depth of the hole is 
larger than its diameter, the rupture of the material deviates significantly from the one- 
dimensional case. In the case of a thermal mechanism of rupture, the velocity of the moving 
surface of evaporation is much smaller than the velocity of motion of the vapor in the hole 
and the resulting gas-dynamical problem is quasisteady and can be considered separately from 
the problem of heat conduction for the walls of the hole [i]. 

There is a large number of papers in the literature in which the formation of a hole is 
studied on the basis of a solution of the heat equation inside a region with moving phase 
transition boundaries (see [2-6], for example). However, the gas dynamics of the dispersion 
of the vapor and its effect on the rupturing process of the material (and hence on the 
spreading of the hole) hasnot been studied extensively. We note that the calculation of 
the integral characteristics of crater formation upon electron-beam treatment of materials 
has been discussed in [7] for intermediate flux densities and has been studied in [8] for 
relativistic electron beams. The one-dimensional flow of an inviscid vapor, with the con- 
densation of the vapor inside a cylindrical hole and on its walls taken into account, has 
been considered in [I]. It is often assumed that in the quasi-steady evaporation regime 
the shape of the hole is approximately a paraboloid of revolution and is constant in time, 
while the temperature of the evaporating surface can be assumed to be constant (see [2], 
for example). 

r 

Z 

ii 

I 

i 

I I 

r 
I 

pr npQ =/7~.~ 

Fig. i. Aperture region and the layout of the 
computational grid. The number of cells of 
the zones A and B along the x and y axes; 
N A ~ 15. 
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Fig. 2, Variation of the density distribu- 
tion, z-component of the average velocity, 
and temperature_along the z axis (Kn = 
0.2): i) n; 2) Cz; 3) T. 

In the present paper we solve the steady-state kinetic equation describing the efflux 
of gas into a vacuum from an axisymmetric hole in the presence of evaporation of material 
from its inner surface�9 The aperture region (Fig. i) is formed by rotating about the z axis 
the generatrix PQ, consisting of a part of a circle PP' of radius Re smoothly joined to the 
line segment P'Q such that the cross-sectional radius of the hole is also Re. The tempera- 
ture along the surface of evaporation is assumed constant and equal to T w. Motion of the 
liquid phase is not taken into account, as in [2]. The gas flow is studied by solving num- 
erically the Boltzmann kinetic equation in three-dimensional space: 

a/ 
cx --~x -]- c~ ~y  "-]- cz O-~z = ~ (['[i --  ~[1) gdadcl. (1) 

On the  su r face  of evapora t ion  PQ, a b~axwellian d i s t r i b u t i o n  f u n c t i o n  f+ i s  s p e c i f i e d  fo r  the  
p a r t i c l e s  e n t e r i n g  the  r eg ion :  

/ h \ s / 2  
[~Q= [ev(r, c ) - - - n e o l - ~ )  exp(--hwcZ), c.npQ>O and r(x, y, g)Erpo ' (2) 

where PpQ is the surface of evaporation. The normal vector npQ is directed inward toward the 
computational region�9 All particles incident on the surface PQ are absorbed, which corresponds 
to an absorption coefficient B = i (this is approximately correct for metals). The density 
of evaporating particles nev is given by the saturation curve nev = nev(Tw) for the particu- 
lar material�9 

On the surface QR we have 

[~2=[r(r ,  c )=  n r exp(--hwcZ), c.nQ~>O, r(x, y, z)EFQR. (3) 

Thus it is assumed that on the surface QR there is total diffuse reflection of incident parti- 
cles. We assume that the flux of particles on the surface RS and ST from the vacuum is zero�9 
Then the boundary conditions are 

[ ~ s = f ( r ,  c)=O, [~ r= f ( r ,  c)=O, -I/x~q-yZq-zZ--~oo, z>O,  n .c>O.  (b) 

S imi lar  boundary c o n d i t i o n s  a t  i n f i n i t y  were used in [9] in  s tudying  the plane-syra~etr ic  prob- 
lem of the efflux of gas from a straight crack. The problem is assumed to be symmetric with 
respect to the coordinate surfaces x = 0 and y = 0. It then follows that the entire computa- 
tional region lies in the first quadrant of the coordinatespace�9 

We chose the following quantities as units of length, density temperature, velocity, and 
distribution function: Re, nev, T w, h~ ~2, nevhS/~ and so the fundamental parameters of the 
problem are the Knudsen number Kn = lo/Ro, the number density nev, the temperature T w of the 
surface PQR, the radius of the aperture Re, and the depth of the hole h. The mean free path 
Zo is calculated for saturated vapor in thermal equilibrium with the surface of the hole Zo = 
(r -t. Here ~ = ~d a is the total collision cross section for a "hard sphere" particle�9 
This model is assumed to represent the interactions between the molecules of the gas. The 
mean free path can vary from 0.066Ro to 50Re. 

The numerical solution of (I) with the boundary conditions (2) through (4) is obtained 
using direct statistical simulation. This method is based on a decomposition of the problem 
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Fig. 3. Equal-density contours inside 
the hole and in the region above it. 

defined by (i) into a succession of simpler problems for each time interval At, which is 
chosen to be sufficiently small. The original idea behind this decomposition was developed 
by Berd (see [ii], for example) in which molecular flow is simulated by following the evolu- 
tion of a system consisting of several thousand particles, representing the actual gas medium. 
The method of Berd requires that there be not less than 20-30 particles on average in each 
cell of the computational grid in order to ensure aphysically valid collision frequency 
[ii]. In the present paper we use the Belotserkovskii and Yanitskii modification of the 
direct statistical simulation method [I0], in which the collision of particles is described 
as a Markov process, thus ensuring a valid collision frequency for a small average number of 
particles No % i. This device significantly widens the possibilities of the method for 
calculations of two-dimensional and three-dlmensional flows. 

The Belotserkovskii and Yanitskii scheme for the numerical simulation of a three-dimen- 
sional flow can be summarized as follows. The real gas medium is replaced by a set {r~, ra, 
�9 .., rN, c,, c2, ..., c N} on N coordinates and velocities (representing the particles) which 
at the initial time are distributed over the cells of the computational grid (see Fig. i) 
in correspondence with the initial conditions of the problem. The evolution of the system 
during the time At is split up into two steps. 

Step I. Collisions between the particles are followed in each cell assuming that the 
particle does not leave its own cell during the time At. The algorithm consists of the fol- 
lowing two-step procedure for each pair of particles (ci, cj) in a given cell. 

(i) The collision of the pair (c i, cj) occurs with the probability 

Pii = ag~i At, 
AV 

where  ~V i s  t h e  c e l l  vo lume,  and g i j  = ] r  -- c j l ,  

(2) I f  a c o l l i s i o n  t a k e s  p l a c e  t h e  v e l o c i t i e s  o f  t he  p a r t i c l e s  ( e l ,  c j )  a r e  changed i n t o  
! ! 

t h e  p o s t - c o l l i s i o n  v e l o c i t i e s  ( c i ,  c j )  u s i n g  t he  f o r m u l a s  

c~ =0 ,5  (cl + ~ + ge), c~ = 0,5 (ci + cj - -  ge), 

where e is a random unit vector which has a uniform distribution on the surface of a unit 
sphere. 

If a collision does not take place, the velocities ci and cj remain unchanged. 

Step II. The collisionless displacement (free dispersion) of all particles during the 
time At is followed. The displacement of a given particle is proportional to its velocity. 
In this step absorption and evaporation of particles on the surfaces are modeled in corre- 
spondence with the boundary conditions (2)-(4). 
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@5 Fig. 4. Dependence of the flux of parti- 
cles and total energy at the hole outlet 
on the reciprocal of the Knudsen number. 

The macroscopic parameters describing steady flow in the cells are determined by comput- 
ing the average molecular characteristics for a particular realization of the model process 
after its transient period. Although macroscopically the problem is axisymmetric, the direct 
use of axial symmetry (solution in the two-dimensional (r, z) region) in the simulation leads 
to an artificial density gradient of particles in the radial direction [Ii] and this de- 
creases the accuracy and efficiency of the simulation. Therefore a three-dimensional quan- 
tities were then averaged over all cells whose centers were within a certain interval Ar of 
the radial coordinate r. 

The computational region PQRSTO consists of three zones A, B, and C (B~C) which are 
subdivided into cubic cells of volume AV = AH~ (a = A, B, or C). In doing this, it is assumed 
that a given cell belongs to the computational grid if its center lies inside the computa- 
tional region. In the calculations we took AH A = &H B = (0.2-0.5)AH C. The lengths of the line 
segments OT and TS forming the outer boundaries of the region C were chosen such that the out- 
flow approximated free-molecular flow in order that the solution inside the computational re- 
gion be free of perturbations due to insufficient braking of the moacroscopic characteristics 
of the external flow. In the calculations with holes of different depths h, the total number 
of cells of the entire region was varied between 2'103 and 1.5"10 ~, and the number of parti- 
cles was varied from 3"103 to 1.5"10 ~. The total number of particles in the steady regime 
depends on the rate of evaporation, and therefore is directly related to the density of evapor- 
ating particles nev. Detailed calculations for different values of ney, in which the average 
number of particles No per cell was varied from 0.5 to 5, support the stability of the results 
obtained from the Belotserkovskii--Yanitskii scheme; this agrees with the theoretical conclu- 
sions (see the addendum to [ii] by Yanistkii). This means that the calculations can be per- 
formed using a minimum number No ~ i of particles per cell. In this way, the execution time 
for the most time-consuming runs was 8-10 h on a computer of the type ES-I055 for No ~ I and 
4000-5000 statistical samples in a cell. 

Figure 2 shows the results for n, ~z, and T along the z axis for Km = 0.2 inside the 
hole and in the region above it. For z < --2Ro the vapor density is practically the same as 
the equilibrium value. A qualitatively similar result is obtained for the case of slow 
evaporation from the inner surface of a cylindrical capillary [12]. We note that when g/kT w > 
3 the condition for supersaturation of the vapor holds inside the hole. 

The density distribution is shown in Fig. 3. Inside the hole the gas density is higher 
near the surface than on the axis of the hole. But over the cross section of the hole the 
radical dependence of n depends on the Knudsen number Kn. For example, for large Kn it is 
found that n is practically constant, while for small Kn the gas density is larger on the 
axis than near the surface. The gas temperature is practically constant over the cross sec- 
tion of the holel 

It follows from Fig. 4 that the flux of particles at the outlet of the hole increases 
fairly slowly with increasing I/Kn; we have Icp/lev = i for 0 < I/Kn < 0.i. We note that 
!cp ~ ~ for the slow evaporation from an infinite cylindrical capillary in the limit of 
small Kn. As for the variation of Icp with the depth of the hole h/Ro, we find that for 
ho/Ro < 0.5, Icp = lev. In the interval 0.5 ~ h/Ro~ 3, we note that Icp and Q increase, 
for h/Ro > 3, Icp and Q are practically constant. The effect of surface irregularities was 
studied in [13] for the case of a fast evaporation of a gas from a two-dimensional periodic 
surface. 
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NOTATION 

f(r, c), velocity distribution of gas molecules; r = x, y, z, position vector in Cartes- 
ian coordinates; r = Cx, Cy, Cz, molecular velocity vector i f' = f(r, c'), f,' = f(r, c~'), 
distribution function of particles with velocities c' and c, after collisions; nev, density of 
saturated vapor at temperature Tw; n r, density of molecules diffusely reflected from the sur- 
faceof the material; n, vapor density; Cz, z-component of the average velocity; h w = m/2kTw; 
k, Boltzmann constant; m, molecular mass; d, molecular dmaimeter; q, energy required to evapo- 
rate an atom; lev, flux of particles evaporating from a unit area of the inner surface of the 
hole; l~p and Q, flux of particles and total energy at the hole outlet, respectively; g = 
Ic -- c,|, magnitude of the relative velocity of the particles. 
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CHARACTERISTICS OF A DESCENDING DISPERSED-ANNULAR FLOW 

M. N. Chepurnoi, V. ~. Shnaider, 
and N. I. Sinyuk 

UDC 532.529:621.24 

Experimental da~a on the loss of liquid from the surface of a film and the resist- 
ance of dispersed-annular flow are presented. 

Film heat- and mass-transfer apparatus is widely used in different sectors of the econ- 
omy. In such apparatus descending flow of a film of liquid and gas often occurs. The most 
common flow regime in heat exchange equipment at nuclear power plants is a descending, co- 
moving regime. The film apparatus with descending direct flow operate at low pressures 
(0.05 < P < 1MPa). Under these conditions the velocity of the gas flow, as a rule, exceeds 
20 m/sec, as a result of which drops are observed to separate from the surface of the film 
[i, 2]. The dispersed-annular flow regime is characterized by continuous mass transfer be- 
tween the film and the core of the flow, intensifying heat transfer and simultaneously in- 
creasing the hydraulic losses. Systematic studies of dispersed-annular flows concern pri- 
marily small-diameter evaporation channels (d < 20 mm) with insignificant fluid flow rates 
in thin films (Re I < 3000) and ascending motion of the mixture [3-5]. 

We therefore pose the problem of studying experimentally the characteristics of a de- 
scending dispersed-annular flow in pipes 30 mm in diameter under conditions characteristic 
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